An Evaluation of Expedited Transcription Methods for School-Age Children's Narrative Language: Automatic Speech Recognition and Real-Time Transcription

Author:

Fox Carly B.1ORCID,Israelsen-Augenstein Megan1ORCID,Jones Sharad2ORCID,Gillam Sandra Laing1ORCID

Affiliation:

1. Department of Communicative Disorders and Deaf Education, Utah State University, Logan

2. Department of Mathematics & Statistics, Utah State University, Logan

Abstract

Purpose This study examined the accuracy and potential clinical utility of two expedited transcription methods for narrative language samples elicited from school-age children (7;5–11;10 [years;months]) with developmental language disorder. Transcription methods included real-time transcription produced by speech-language pathologists (SLPs) and trained transcribers (TTs) as well as Google Cloud Speech automatic speech recognition. Method The accuracy of each transcription method was evaluated against a gold-standard reference corpus. Clinical utility was examined by determining the reliability of scores calculated from the transcripts produced by each method on several language sample analysis (LSA) measures. Participants included seven certified SLPs and seven TTs. Each participant was asked to produce a set of six transcripts in real time, out of a total 42 language samples. The same 42 samples were transcribed using Google Cloud Speech. Transcription accuracy was evaluated through word error rate. Reliability of LSA scores was determined using correlation analysis. Results Results indicated that Google Cloud Speech was significantly more accurate than real-time transcription in transcribing narrative samples and was not impacted by speech rate of the narrator. In contrast, SLP and TT transcription accuracy decreased as a function of increasing speech rate. LSA metrics generated from Google Cloud Speech transcripts were also more reliably calculated. Conclusions Automatic speech recognition showed greater accuracy and clinical utility as an expedited transcription method than real-time transcription. Though there is room for improvement in the accuracy of speech recognition for the purpose of clinical transcription, it produced highly reliable scores on several commonly used LSA metrics. Supplemental Material https://doi.org/10.23641/asha.15167355

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3