Adductory Vocal Fold Kinematic Trajectories During Conventional Versus High-Speed Videoendoscopy

Author:

Diaz-Cadiz Manuel1,McKenna Victoria S.1,Vojtech Jennifer M.12,Stepp Cara E.123

Affiliation:

1. Department of Speech, Language, and Hearing Sciences, Boston University, MA

2. Department of Biomedical Engineering, Boston University, MA

3. Department of Otolaryngology–Head and Neck Surgery, Boston University School of Medicine, MA

Abstract

Objective Prephonatory vocal fold angle trajectories may supply useful information about the laryngeal system but were examined in previous studies using sigmoidal curves fit to data collected at 30 frames per second (fps). Here, high-speed videoendoscopy (HSV) was used to investigate the impacts of video frame rate and sigmoidal fitting strategy on vocal fold adductory patterns for voicing onsets. Method Twenty-five participants with healthy voices performed /ifi/ sequences under flexible nasendoscopy at 1,000 fps. Glottic angles were extracted during adduction for voicing onset; resulting vocal fold trajectories (i.e., changes in glottic angle over time) were down-sampled to simulate different frame rate conditions (30–1,000 fps). Vocal fold adduction data were fit with asymmetric sigmoids using 5 fitting strategies with varying parameter restrictions. Adduction trajectories and maximum adduction velocities were compared between the fits and the actual HSV data. Adduction trajectory errors between HSV data and fits were evaluated using root-mean-square error and maximum angular velocity error. Results Simulated data were generally well fit by sigmoid models; however, when compared to the actual 1,000-fps data, sigmoid fits were found to overestimate maximum angle velocities. Errors decreased as frame rate increased, reaching a plateau by 120 fps. Conclusion In healthy adults, vocal fold kinematic behavior during adduction is generally sigmoidal, although such fits can produce substantial errors when data are acquired at frame rates lower than 120 fps.

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3