Wav2DDK: Analytical and Clinical Validation of an Automated Diadochokinetic Rate Estimation Algorithm on Remotely Collected Speech

Author:

Kadambi Prad12ORCID,Stegmann Gabriela M.2,Liss Julie32ORCID,Berisha Visar132ORCID,Hahn Shira2ORCID

Affiliation:

1. School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe

2. Aural Analytics Inc., Tempe, AZ

3. School of Speech and Hearing Science, Arizona State University, Tempe

Abstract

Purpose: Oral diadochokinesis is a useful task in assessment of speech motor function in the context of neurological disease. Remote collection of speech tasks provides a convenient alternative to in-clinic visits, but scoring these assessments can be a laborious process for clinicians. This work describes Wav2DDK, an automated algorithm for estimating the diadochokinetic (DDK) rate on remotely collected audio from healthy participants and participants with amyotrophic lateral sclerosis (ALS). Method: Wav2DDK was developed using a corpus of 970 DDK assessments from healthy and ALS speakers where ground truth DDK rates were provided manually by trained annotators. The clinical utility of the algorithm was demonstrated on a corpus of 7,919 assessments collected longitudinally from 26 healthy controls and 82 ALS speakers. Corpora were collected via the participants' own mobile device, and instructions for speech elicitation were provided via a mobile app. DDK rate was estimated by parsing the character transcript from a deep neural network transformer acoustic model trained on healthy and ALS speech. Results: Algorithm estimated DDK rates are highly accurate, achieving .98 correlation with manual annotation, and an average error of only 0.071 syllables per second. The rate exactly matched ground truth for 83% of files and was within 0.5 syllables per second for 95% of files. Estimated rates achieve a high test-retest reliability ( r = .95) and show good correlation with the revised ALS functional rating scale speech subscore ( r = .67). Conclusion: We demonstrate a system for automated DDK estimation that increases efficiency of calculation beyond manual annotation. Thorough analytical and clinical validation demonstrates that the algorithm is not only highly accurate, but also provides a convenient, clinically relevant metric for tracking longitudinal decline in ALS, serving to promote participation and diversity of participants in clinical research. Supplemental Material: https://doi.org/10.23641/asha.23787033

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3