Measuring Prosodic Entrainment in Conversation: A Review and Comparison of Different Methods

Author:

Kruyt Joanna12ORCID,de Jong Dorina34,D'Ausilio Alessandro34,Beňuš Štefan15

Affiliation:

1. Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia

2. Faculty of Informatics and Information Technologies, Slovak Technical University, Bratislava, Slovakia

3. Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication, Ferrara, Italy

4. Università di Ferrara, Dipartimento di Neuroscienze e Riabilitazione, Italy

5. Constantine the Philosopher University, Nitra, Slovakia

Abstract

Purpose: This study aims to further our understanding of prosodic entrainment and its different subtypes by analyzing a single corpus of conversations with 12 different methods and comparing the subsequent results. Method: Entrainment on three fundamental frequency features was analyzed in a subset of recordings from the LUCID corpus (Baker & Hazan, 2011) using the following methods: global proximity, global convergence, local proximity, local convergence, local synchrony (Levitan & Hirschberg, 2011), prediction using linear mixed-effects models (Schweitzer & Lewandowski, 2013), geometric approach (Lehnert-LeHouillier, Terrazas, & Sandoval, 2020), time-aligned moving average (Kousidis et al., 2008), HYBRID method (De Looze et al., 2014), cross-recurrence quantification analysis (e.g., Fusaroli & Tylén, 2016), and windowed, lagged cross-correlation (Boker et al., 2002). We employed entrainment measures on a local timescale (i.e., on adjacent utterances), a global timescale (i.e., over larger time frames), and a time series–based timescale that is larger than adjacent utterances but smaller than entire conversations. Results: We observed variance in results of different methods. Conclusions: Results suggest that each method may measure a slightly different type of entrainment. The complex implications this has for existing and future research are discussed.

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

Reference58 articles.

1. Analysis of Observed Chaotic Data

2. A comparison of vowel normalization procedures for language variation research

3. DiapixUK: task materials for the elicitation of multiple spontaneous speech dialogs

4. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. ArXiv. https://doi.org/10.48550/arXiv.1406.5823

5. Quantifying physiological synchrony through windowed cross-correlation analysis: Statistical and theoretical considerations;Behrens F.;BioRxiv,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3