Medial Olivocochlear Reflex Strength in Ears With Low-to-Moderate Annual Noise Exposure

Author:

Lewis James D.1ORCID,Goettl-Meyer Morgaine2,Lee Donguk1

Affiliation:

1. Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville

2. Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora

Abstract

Purpose: Studies in lower mammals demonstrate enhancement of the medial olivocochlear reflex (MOCR) following noise exposure. A similar effect may occur in humans, and there is some evidence of an individual's acoustic history affecting the MOCR. The current work evaluates the relationship between an individual's annual noise exposure history and their MOCR strength. Given the potential role of the MOCR as a biological hearing protector, it is important to identify factors associated with MOCR strength. Method: Data were collected from 98 normal-hearing young adults. Annual noise exposure history was estimated using the Noise Exposure Questionnaire. MOCR strength was assayed using click-evoked otoacoustic emissions (CEOAEs) measured with and without noise presented to the contralateral ear. MOCR metrics included the MOCR-induced otoacoustic emission (OAE) magnitude shift and phase shift. A CEOAE signal-to-noise ratio (SNR) of at least 12 dB was required for estimation of the MOCR metrics. Linear regression was applied to evaluate the relationship between MOCR metrics and annual noise exposure. Results: Annual noise exposure was not a statistically significant predictor of the MOCR-induced CEOAE magnitude shift. However, annual noise exposure was a statistically significant predictor of the MOCR-induced CEOAE phase shift—the MOCR-induced phase shift decreased with increasing noise exposure. Additionally, annual noise exposure was a statistically significant predictor of OAE level. Conclusions: Findings contrast with recent work that suggests MOCR strength increases with annual noise exposure. Compared with previous work, data for this study were collected using more stringent SNR criteria, which is expected to increase the precision of the MOCR metrics. Additionally, data were collected for a larger subject population with a wider range of noise exposures. Whether findings generalize to other exposure durations and levels is unknown and requires future study.

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3