Perceptual Encoding in Auditory Brainstem Responses: Effects of Stimulus Frequency

Author:

Tabachnick Alexandra R.1,Toscano Joseph C.2

Affiliation:

1. Department of Psychological and Brain Sciences, University of Delaware, Newark

2. Department of Psychological and Brain Sciences, Villanova University, PA

Abstract

Purpose A central question about auditory perception concerns how acoustic information is represented at different stages of processing. The auditory brainstem response (ABR) provides a potentially useful index of the earliest stages of this process. However, it is unclear how basic acoustic characteristics (e.g., differences in tones spanning a wide range of frequencies) are indexed by ABR components. This study addresses this by investigating how ABR amplitude and latency track stimulus frequency for tones ranging from 250 to 8000 Hz. Method In a repeated-measures experimental design, listeners were presented with brief tones (250, 500, 1000, 2000, 4000, and 8000 Hz) in random order while electroencephalography was recorded. ABR latencies and amplitudes for Wave V (6–9 ms) and in the time window following the Wave V peak (labeled as Wave VI ; 9–12 ms) were measured. Results Wave V latency decreased with increasing frequency, replicating previous work. In addition, Waves V and VI amplitudes tracked differences in tone frequency, with a nonlinear response from 250 to 8000 Hz and a clear log-linear response to tones from 500 to 8000 Hz. Conclusions Results demonstrate that the ABR provides a useful measure of early perceptual encoding for stimuli varying in frequency and that the tonotopic organization of the auditory system is preserved at this stage of processing for stimuli from 500 to 8000 Hz. Such a measure may serve as a useful clinical tool for evaluating a listener's ability to encode specific frequencies in sounds. Supplemental Material https://doi.org/10.23641/asha.6987422

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3