Predicting Speech Recognition Using the Speech Intelligibility Index and Other Variables for Cochlear Implant Users

Author:

Lee Sungmin1,Mendel Lisa Lucks2,Bidelman Gavin M.234

Affiliation:

1. Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas

2. School of Communication Sciences and Disorders, University of Memphis, TN

3. Institute for Intelligent Systems, University of Memphis, TN

4. Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis

Abstract

Purpose Although the speech intelligibility index (SII) has been widely applied in the field of audiology and other related areas, application of this metric to cochlear implants (CIs) has yet to be investigated. In this study, SIIs for CI users were calculated to investigate whether the SII could be an effective tool for predicting speech perception performance in a population with CI. Method Fifteen pre- and postlingually deafened adults with CI participated. Speech recognition scores were measured using the AzBio sentence lists. CI users also completed questionnaires and performed psychoacoustic (spectral and temporal resolution) and cognitive function (digit span) tests. Obtained SIIs were compared with predicted SIIs using a transfer function curve. Correlation and regression analyses were conducted on perceptual and demographic predictor variables to investigate the association between these factors and speech perception performance. Result Because of the considerably poor hearing and large individual variability in performance, the SII did not predict speech performance for this CI group using the traditional calculation. However, new SII models were developed incorporating predictive factors, which improved the accuracy of SII predictions in listeners with CI. Conclusion Conventional SII models are not appropriate for predicting speech perception scores for CI users. Demographic variables (aided audibility and duration of deafness) and perceptual–cognitive skills (gap detection and auditory digit span outcomes) are needed to improve the use of the SII for listeners with CI. Future studies are needed to improve our CI-corrected SII model by considering additional predictive factors. Supplemental Material https://doi.org/10.23641/asha.8057003

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3