Architecture of the Suprahyoid Muscles: A Volumetric Musculoaponeurotic Analysis

Author:

Shaw Stephanie M.1,Martino Rosemary123,Mahdi Ali4,Sawyer Forrest Kip4,Mathur Sunita5,Hope Andrew6,Agur Anne M.4

Affiliation:

1. Department of Speech-Language Pathology, University of Toronto, Ontario, Canada

2. Department of Otolaryngology—Head and Neck Surgery, University of Toronto, Ontario, Canada

3. Health Care and Outcomes Research, Toronto Western Research Institute, University Health Network, Ontario, Canada

4. Department of Surgery, Division of Anatomy, University of Toronto, Ontario, Canada

5. Department of Physical Therapy, University of Toronto, Ontario, Canada

6. Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada

Abstract

Purpose Suprahyoid muscles play a critical role in swallowing. The arrangement of the fiber bundles and aponeuroses has not been investigated volumetrically, even though muscle architecture is an important determinant of function. Thus, the purpose was to digitize, model in three dimensions, and quantify the architectural parameters of the suprahyoid muscles to determine and compare their relative functional capabilities. Method Fiber bundles and aponeuroses from 11 formalin-embalmed specimens were serially dissected and digitized in situ. Data were reconstructed in three dimensions using Autodesk Maya. Architectural parameters were quantified, and data were compared using independent samples t -tests and analyses of variance. Results Based on architecture and attachment sites, suprahyoid muscles were divided into 3 groups: anteromedial, superolateral, and superoposterior. Architectural parameters differed significantly ( p < .05) across muscles and across the 3 groups, suggesting differential roles in hyoid movement during swallowing. When activated simultaneously, anteromedial and superoposterior muscle groups could work together to elevate the hyoid. Conclusions The results suggest that the suprahyoid muscles can have individualized roles in hyoid excursion during swallowing. Muscle balance may be important for identifying and treating hyolaryngeal dysfunction in patients with dysphagia.

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3