Auditory Brainstem Response Wave I Prediction of Conductive Component in Infants and Young Children

Author:

Mackersie Carol L.1,Stapells David R.12

Affiliation:

1. Albert Einstein College of Medicine, Bronx, NY City University of New York

2. Albert Einstein College of Medicine, Rose F. Kennedy Center, Rm. 817, 1410 Pelham Parkway, Bronx, NY 10461

Abstract

Wave I latencies were used to predict the magnitude of conductive components in 80 infants and young children (122 ears) with normal hearing, conductive hearing loss due to otitis media or aural atresia, sensorineural hearing loss, and mixed hearing loss. Two prediction methods were used. The first method based predictions on a 0.03-ms wave I latency delay for each decibel of conductive hearing loss. The second method was based on a regression analysis of wave I latency delays and the magnitude of conductive component for the subjects in this study with normal cochlear status. On average, these prediction methods resulted in prediction errors of 15 dB or greater in over one-third of the ears with hearing loss. Therefore, the clinical use of wave I latencies to predict the presence or magnitude of conductive impairment is not recommended for infants and young children. Instead, bone-conduction ABR testing is recommended as a direct measure of cochlear status when behavioral evaluation is not possible.

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing

Reference40 articles.

1. Guidelines for the audiologic assessment of children from birth through 36 months of age;American Speech-Language-Hearing Association;Asha,1991

2. Patterns of auditory nerve and brainstem-evoked responses (ABR) in different types of peripheral hearing loss;Chisin R.;Archives of Otorhinolaryngology,1983

3. Human auditory nerve action potentials and brain stem evoked responses. Latency-intensity functions in detection of cochlear and retrocochlear abnormality;Coats A. C.;Archives of Otolaryngology,1978

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3