Affiliation:
1. The University of Iowa, Iowa City, IA, and National Center for Voice and Speech, The Denver Center for the Performing Arts, Denver, CO
Abstract
Purpose
Maximum flow declination rate (MFDR) in the glottis is known to correlate strongly with vocal intensity in voicing. This declination, or negative slope on the glottal airflow waveform, is in part attributable to the maximum area declination rate (MADR) and in part to the overall inertia of the air column of the vocal tract (lungs to lips). The purpose of this theoretical study was to show the possible contributions of air inertance and MADR to MFDR.
Method
A simplified computational model of the kinematics of vocal fold movement was utilized to compute a glottal area function. The glottal flow was computed interactively with lumped vocal tract parameters in the form of resistance and inertive reactance.
Results
It was shown that MADR depends almost entirely on the ratio of vibrational amplitudes of the lower to upper margins of the vocal fold tissue. Adduction, vertical phase difference, and prephonatory convergence of the glottis have a lesser effect on MADR. A relatively simple rule was developed that relates MFDR to a vibrational amplitude ratio and vocal tract inertance.
Conclusion
It was concluded that speakers and singers have multiple options for control of intensity, some of which involve more source–filter interaction than others.
Publisher
American Speech Language Hearing Association
Subject
Speech and Hearing,Linguistics and Language,Language and Linguistics
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献