Automatic Speech Recognition of Conversational Speech in Individuals With Disordered Speech

Author:

Tobin Jimmy1ORCID,Nelson Phillip1,MacDonald Bob1ORCID,Heywood Rus1,Cave Richard2ORCID,Seaver Katie3ORCID,Desjardins Antoine3ORCID,Jiang Pan-Pan1,Green Jordan R.34ORCID

Affiliation:

1. Google LLC, Mountain View, CA

2. MND Association, Northampton, United Kingdom

3. MGH Institute of Health Professions, Boston, MA

4. Harvard University, Cambridge, MA

Abstract

Purpose: This study examines the effectiveness of automatic speech recognition (ASR) for individuals with speech disorders, addressing the gap in performance between read and conversational ASR. We analyze the factors influencing this disparity and the effect of speech mode–specific training on ASR accuracy. Method: Recordings of read and conversational speech from 27 individuals with various speech disorders were analyzed using both (a) one speaker-independent ASR system trained and optimized for typical speech and (b) multiple ASR models that were personalized to the speech of the participants with disordered speech. Word error rates were calculated for each speech model, read versus conversational, and subject. Linear mixed-effects models were used to assess the impact of speech mode and disorder severity on ASR accuracy. We investigated nine variables, classified as technical, linguistic, or speech impairment factors, for their potential influence on the performance gap. Results: We found a significant performance gap between read and conversational speech in both personalized and unadapted ASR models. Speech impairment severity notably impacted recognition accuracy in unadapted models for both speech modes and in personalized models for read speech. Linguistic attributes of utterances were the most influential on accuracy, though atypical speech characteristics also played a role. Including conversational speech samples in model training notably improved recognition accuracy. Conclusions: We observed a significant performance gap in ASR accuracy between read and conversational speech for individuals with speech disorders. This gap was largely due to the linguistic complexity and unique characteristics of speech disorders in conversational speech. Training personalized ASR models using conversational speech significantly improved recognition accuracy, demonstrating the importance of domain-specific training and highlighting the need for further research into ASR systems capable of handling disordered conversational speech effectively.

Publisher

American Speech Language Hearing Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3