Electroencephalographic Classification Reveals Atypical Speech Motor Planning in Stuttering Adults

Author:

Kinahan Sean P.12ORCID,Saidi Pouria3ORCID,Daliri Ayoub1ORCID,Liss Julie4ORCID,Berisha Visar13ORCID

Affiliation:

1. College of Health Solutions, Arizona State University, Tempe

2. School of Computing and Augmented Intelligence, Arizona State University, Tempe

3. School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe

4. Department of Speech and Hearing Science, Arizona State University, Tempe

Abstract

Purpose: This study explores speech motor planning in adults who stutter (AWS) and adults who do not stutter (ANS) by applying machine learning algorithms to electroencephalographic (EEG) signals. In this study, we developed a technique to holistically examine neural activity differences in speaking and silent reading conditions across the entire cortical surface. This approach allows us to test the hypothesis that AWS will exhibit lower separability of the speech motor planning condition. Method: We used the silent reading condition as a control condition to isolate speech motor planning activity. We classified EEG signals from AWS and ANS individuals into speaking and silent reading categories using kernel support vector machines. We used relative complexities of the learned classifiers to compare speech motor planning discernibility for both classes. Results: AWS group classifiers require a more complex decision boundary to separate speech motor planning and silent reading classes. Conclusions: These findings indicate that the EEG signals associated with speech motor planning are less discernible in AWS, which may result from altered neuronal dynamics in AWS. Our results support the hypothesis that AWS exhibit lower inherent separability of the silent reading and speech motor planning conditions. Further investigation may identify and compare the features leveraged for speech motor classification in AWS and ANS. These observations may have clinical value for developing novel speech therapies or assistive devices for AWS.

Publisher

American Speech Language Hearing Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3