Collision Warning Timing, Driver Distraction, and Driver Response to Imminent Rear-End Collisions in a High-Fidelity Driving Simulator

Author:

Lee John D.1,McGehee Daniel V.1,Brown Timothy L.1,Reyes Michelle L.1

Affiliation:

1. University of Iowa, Iowa City, Iowa

Abstract

Rear-end collisions account for almost 30% of automotive crashes. Rear-end collision avoidance systems (RECASs) may offer a promising approach to help drivers avoid these crashes. Two experiments performed using a high-fidelity motion-based driving simulator examined driver responses to evaluate the efficacy of a RECAS. The first experiment showed that early warnings helped distracted drivers react more quickly---and thereby avoid more collisions---than did late warnings or no warnings. Compared with the no-warning condition, an early RECAS warning reduced the number of collisions by 80.7%. Assuming collision severity is proportional to kinetic energy, the early warning reduced collision severity by 96.5%. In contrast, the late warning reduced collisions by 50.0 % and the corresponding severity by 87.5%. The second experiment showed that RECAS benefits even undistracted drivers. Analysis of the braking process showed that warnings provide a potential safety benefit by reducing the time required for drivers to release the accelerator. Warnings do not, however, speed application of the brake, increase maximum deceleration, or affect mean deceleration. These results provide the basis for a computational model of driver performance that was used to extrapolate the findings and identify the most promising parameter settings. Potential applications of these results include methods for evaluating collision warning systems, algorithm design guidance, and driver performance model input.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 395 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3