Navigation Performance With a Virtual Auditory Display: Effects of Beacon Sound, Capture Radius, and Practice

Author:

Walker Bruce N.1,Lindsay Jeffrey1

Affiliation:

1. Georgia Institute of Technology, Atlanta, Georgia

Abstract

Objective: We examined whether spatialized nonspeech beacons could guide navigation and how sound timbre, waypoint capture radius, and practice affect performance. Background: Auditory displays may assist mobility and wayfinding for those with temporary or permanent visual impairment, but they remain understudied. Previous systems have used speech-based interfaces. Method: Participants (108 undergraduates) navigated three maps, guided by one of three beacons (pink noise, sonar ping, or 1000-Hz pure tone) spatialized by a virtual reality engine. Dependent measures were efficiency of time and path length. Results: Overall navigation was very successful, with significant effects of practice and capture radius, and interactions with beacon sound. Overshooting and subsequent hunting for waypoints was exacerbated for small radius conditions. A human-scale capture radius (1.5 m) and sonar-like beacon yielded the optimal combination for safety and efficiency. Conclusion: The selection of beacon sound and capture radius depend on the specific application, including whether speed of travel or adherence to path are of primary concern. Extended use affects sound preferences and quickly leads to improvements in both speed and accuracy. Application: These findings should lead to improved wayfinding systems for the visually impaired as well as for first responders (e.g., firefighters) and soldiers.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Reference30 articles.

1. Techniques and Applications for Binaural Sound Manipulation

2. Busboom, M. & May, M. (1999). Mobile navigation for the blind. In Proceedings of the International Conference on Wearable Computing (pp. 19–23). Vienna, Austria: ISWC.

3. Transfer of Route Learning From Virtual to Real Environments.

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3