Specific Influenza Therapy: Current State and Prospects (Review)

Author:

Odnovorov A. I.1,Grebennikova T. V.2,Pleteneva T. V.1

Affiliation:

1. Peoples Friendship University of Russia (RUDN University)

2. Peoples Friendship University of Russia (RUDN University); N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology

Abstract

Introduction. Respiratory infections are among the leaders in morbidity and mortality worldwide. The most severe cases of the disease are most often caused by the flu virus. Currently, there are many ways of specific prevention and treatment of influenza infection, but their effectiveness is far from ideal. This is due to the high variability of the influenza virus and the subsequent occurrence of resistance to the drugs used. In this regard, the improvement and development of antiviral drugs is an urgent task.Text. Influenza virus is an RNA-containing virus that causes massive epidemics and pandemics. Specific influenza prophylaxis includes vaccination. However, antigenic variability of the virus reduces the effectiveness of the vaccine, which requires constant costly development of its more advanced modifications. Specific treatment for influenza infection includes several classes of drugs, such as neuraminidase (NA) inhibitors oseltamivir, zanamivir and M2 protein inhibitors amantadine, rimantadine. At one time, these drugs were quite effective. But the formed resistance of influenza viruses to these drugs requires the creation of new or modifications of existing antiviral agents. Among the new domestic developments of antiviral drugs, histidyl-1-adamantainethylamine, which is a modification of the rimantadine molecule, has shown sufficient antiviral activity at the stage of preclinical studies. A representative of another class of drugs is arbidol (umifenovir), an inhibitor of hemagglutinin (HA) of the influenza virus. According to studies, the drug has high profiles of efficacy and safety, but the recommendation of the World Health Organization is to continue clinical trials. Currently, clinical studies of new classes of drugs are underway – baloxavir marboxil and favipiravir. Baloxavir marboxyl is a prodrug that is converted in vivo to baloxavir, an inhibitor of cap-dependent endonuclease. Favipiravir is an inhibitor of RNA-dependent RNA polymerase. In vitro studies in cell culture and in vivo in laboratory animals have shown higher efficacy of these drugs than the above with minimal toxicity.Conclusion. The rapid evolution of the influenza virus leads to a gradual decrease in the effectiveness of modern antiviral drugs. New compounds targeting targets important for virus reproduction are in clinical trials. The future of the fight against influenza depends on the outcome of these tests, according to which the compounds can become effective drugs for the prevention and treatment of influenza.

Publisher

Center of Pharmaceutical Analytics Ltd

Subject

Drug Discovery,Pharmaceutical Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3