Could Bioluminescent Bacteria be Used in the Search for New Plant-derived Antibacterial Substances?

Author:

Katsev A. M.1ORCID,Safronyuk S. L.1ORCID,Burtseva Y. V.1ORCID,Osmanova S. Y.1ORCID

Affiliation:

1. V. I. Vernadsky Crimean Federal University

Abstract

Introduction. Currently, the search for new antibacterial substances is an urgent task due to the growing resistance of pathogens to existing antibiotics. One of the key directions in this area is the expansion of scientific research of medicinal plants, as new sources of therapeutic agents. This article examines the possibility of using highly sensitive bioluminescent test bacteria for these purposes, which can quickly detect non-specific antimicrobial activity and can be adapted to highly effective pharmaceutical screening technologies.Aim. To study the applicability of bioluminescent bacteria for the analysis of the antibacterial activity of biologically active substances (BAS) of plant origin.Materials and methods. BAS quercetin, 8-hydroxyquinoline, gallic acid and thymoquinone, which are often found in medicinal plant raw materials and with which its antibacterial properties are associated, were used in the work. Bacteria with constitutive bioluminescence Aliivibrio fischeri F1 and Escherichia coli (pXen7), as well as recombinant bioreporter strains with inducible luminescence were used as test-objects: E. coli (pRecA-lux), E. coli (pColD-lux), reacting to nucleic acid damage; E. coli (pKatG-lux) and E. coli (pSoxS-lux), sensitive to oxidative stress.Results and discussion. It was found that the nonspecific antimicrobial activity of the studied BAS is manifested in the inhibition of bacterial bioluminescence of test-strains with constitutive glowing. It was noted that the marine test-bacteria A. fischeri F1 have significantly greater sensitivity to the action of BAS, compared with the recombinant strain of E. coli (pXen7). It has been shown that their inhibitory effect begins at concentrations of 2 mcg/ml, and bactericidal activity occurs at concentrations of more than 20 mcg/ml. The results obtained are compared with the data on MIC and MBC of gram(+) and gram(–) pathogens. The study of the induction of bioluminescence of recombinant bioreporter strains showed that the antibacterial effect of the BAS is accompanied by oxidative stress. Also, quercetin caused activation of luminescence in E. coli (pRecA-lux) and E. coli (pColD-lux), which may indicate its participation in damage to nucleic acids. Analysis of the induction factors of bioreporter strains indicates that the revealed mechanisms of antibacterial activity are not major, but may be of a secondary nature.Conclusion. It has been shown that the intensity of the glow of natural and recombinant bioluminescent bacteria can be an indicator of the antibacterial activity of BAS of natural origin. The high sensitivity of A. fischeri F1 bacteria to the action of substances such as quercetin, 8-hydroxyquinoline, gallic acid and thymoquinone has been shown. Considering that bioluminescence analysis is a quantitative instrumental method, it can be easily adapted for high-throughput pharmaceutical screening. It has been shown that the luminescence intensity of natural and recombinant bioluminescent bacteria can be an indicator of the antibacterial activity of BAS of natural origin. The high sensitivity of A. fischeri F1 to the action of substances such as quercetin, 8-hydroxyquinoline, gallic acid and thymoquinone has been established. Taking in an account that bioluminescent analysis is a quantitative instrumental method, it can be easily adapted for high-throughput pharmaceutical screening.

Publisher

Center of Pharmaceutical Analytics Ltd

Subject

Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3