Super Resolution pada Citra Udara menggunakan Convolutional Neural Network

Author:

ABDULFATTAH MUHAMMAD EFAN,NOVAMIZANTI LEDYA,RIZAL SYAMSUL

Abstract

ABSTRAKBencana di Indonesia didominasi oleh bencana hidrometeorologi yang mengakibatkan kerusakan dalam skala besar. Melalui pemetaan, penanganan yang menyeluruh dapat dilakukan guna membantu analisa dan penindakan selanjutnya. Unmanned Aerial Vehicle (UAV) dapat digunakan sebagai alat bantu pemetaan dari udara. Namun, karena faktor kamera maupun perangkat pengolah citra yang tidak memenuhi spesifikasi, hasilnya menjadi kurang informatif. Penelitian ini mengusulkan Super Resolution pada citra udara berbasis Convolutional Neural Network (CNN) dengan model DCSCN. Model terdiri atas Feature Extraction Network untuk mengekstraksi ciri citra, dan Reconstruction Network untuk merekonstruksi citra. Performa DCSCN dibandingkan dengan Super Resolution CNN (SRCNN). Eksperimen dilakukan pada dataset Set5 dengan nilai scale factor 2, 3 dan 4. Secara berurutan SRCNN menghasilkan nilai PSNR dan SSIM sebesar 36.66 dB / 0.9542, 32.75 dB / 0.9090 dan 30.49 dB / 0.8628. Performa DCSCN meningkat menjadi 37.614dB / 0.9588, 33.86 dB / 0.9225 dan 31.48 dB / 0.8851.Kata kunci: citra udara, deep learning, super resolution ABSTRACTDisasters in Indonesia are dominated by hydrometeorological disasters, which cause large-scale damage. Through mapping, comprehensive handling can be done to help the analysis and subsequent action. Unmanned Aerial Vehicle (UAV) can be used as an aerial mapping tool. However, due to the camera and image processing devices that do not meet specifications, the results are less informative. This research proposes Super Resolution on aerial imagery based on Convolutional Neural Network (CNN) with the DCSCN model. The model consists of Feature Extraction Network for extracting image features and Reconstruction Network for reconstructing images. DCSCN's performance is compared to CNN Super Resolution (SRCNN). Experiments were carried out on the Set5 dataset with scale factor values 2, 3, and 4. The SRCNN sequentially produced PSNR and SSIM values of 36.66dB / 0.9542, 32.75dB / 0.9090 and 30.49dB / 0.8628. DCSCN's performance increased to 37,614dB / 0.9588, 33.86dB / 0.9225 and 31.48dB / 0.8851.Keywords: aerial imagery, deep learning, super resolution

Publisher

Institut Teknologi Nasional, Bandung

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3