Testing the Semi Markov Model Using Monte Carlo Simulation Method for Predicting the Network Traffic

Author:

Kordnoori ShirinORCID,Mostafaei HamidrezaORCID,Kordnoori ShaghayeghORCID,Ostadrahimi Mohammadmohsen

Abstract

Semi-Markov processes can be considered as a generalization of both Markov and renewal processes. One of the principal characteristics of these processes is that in opposition to Markov models, they represent systems whose evolution is dependent not only on their last visited state but on the elapsed time since this state. Semi-Markov processes are replacing the exponential distribution of time intervals with an optional distribution. In this paper, we give a statistical approach to test the semi-Markov hypothesis. Moreover, we describe a Monte Carlo algorithm able to simulate the trajectories of the semi-Markov chain. This simulation method is used to test the semi-Markov model by comparing and analyzing the results with empirical data. We introduce the database of Network traffic which is employed for applying the Monte Carlo algorithm. The statistical characteristics of real and synthetic data from the models are compared. The comparison between the semi-Markov and the Markov models is done by computing the Autocorrelation functions and the probability density functions of the Network traffic real and simulated data as well. All the comparisons admit that the Markovian hypothesis is rejected in favor of the more general semi Markov one. Finally, the interval transition probabilities which show the future predictions of the Network traffic are given.

Publisher

Pakistan Journal of Statistics and Operation Research

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Modeling and Simulation,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3