Abstract
One of the well-known methods for the determination of wind energy potential is the two-parameter Weibull distribution. It is clear that the success of the Weibull distribution for wind energy applications depends on the estimation of the parameters which can be determined by using various numerical methods. In the present study, Monte Carlo simulation method is performed by using six parameters estimation method that is used in the estimation of Weibull distribution parameters such as Maximum Likelihood Estimation (MLE), Least Squares Method (LSM), Method of Moments (MOM), Method of Logarithmic Moments (MLM), Percentile Method (PM), and L-Moment Method (LM), and is compared to Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). In this study, the wind energy potential of the Meşelik region in Eskişehir was modeled with two-parameter Weibull distribution. The average wind speed (m/s) data, which are gathered in 10-minute intervals from the measuring device installed 10 meters about the ground in Meşelik Campus of Eskişehir Osmangazi University, is used. As a result of the simulation study, it has been determined that MLE is the best parameter estimation method for two-parameter Weibull distribution in large sample sizes, and LM has the closest performance to MLE. The wind speed (m/h) data of the region has been successfully modeled with two-parameter Weibull distribution and the highest average wind power density has been obtained in July as 49.38295 (W/m2) while the lowest average wind power density has been obtained in October as 19.30044 (W/m2).
Publisher
Pakistan Journal of Statistics and Operation Research
Subject
Management Science and Operations Research,Statistics, Probability and Uncertainty,Modelling and Simulation,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献