Improved Pairwise Measurement-Based Surface Code

Author:

Grans-Samuelsson Linnea1,Mishmash Ryan V.1,Aasen David1,Knapp Christina1,Bauer Bela1,Lackey Brad2,Silva Marcus P. da2,Bonderson Parsa1

Affiliation:

1. Microsoft Station Q, Santa Barbara, California 93106-6105 USA

2. Microsoft Quantum, Redmond, Washington 98052, USA

Abstract

We devise a new realization of the surface code on a rectangular lattice of qubits utilizing single-qubit and nearest-neighbor two-qubit Pauli measurements and three auxiliary qubits per plaquette. This realization gains substantial advantages over prior pairwise measurement-based realizations of the surface code. It has a short operation period of 4 steps and our performance analysis for a standard circuit noise model yields a high fault-tolerance threshold of approximately 0.66%. The syndrome extraction circuits avoid bidirectional hook errors, so we can achieve full code distance by choosing appropriate boundary conditions. We also construct variants of the syndrome extraction circuits that entirely prevent hook errors, at the cost of larger circuit depth. This achieves full distance regardless of boundary conditions, with only a modest decrease in the threshold. Furthermore, we propose an efficient strategy for dealing with dead components (qubits and measurements) in our surface code realization, which can be adopted more generally for other surface code realizations. This new surface code realization is highly optimized for Majorana-based hardware, accounting for constraints imposed by layouts and the implementation of measurements, making it competitive with the recently proposed Floquet codes.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Reference27 articles.

1. Alexei Yu. Kitaev. ``Fault-tolerant quantum computation by anyons''. Annals of Physics 303, 2–30 (2003). arXiv:quant-ph/9707021.

2. Sergey B. Bravyi and Alexei Yu. Kitaev. ``Quantum codes on a lattice with boundary'' (1998). arXiv:quant-ph/9811052.

3. Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. ``Topological quantum memory''. Journal of Mathematical Physics 43, 4452–4505 (2002). arXiv:quant-ph/0110143.

4. Michael E. Beverland, Prakash Murali, Matthias Troyer, Krysta M. Svore, Torsten Hoefler, Vadym Kliuchnikov, Guang Hao Low, Mathias Soeken, Aarthi Sundaram, and Alexander Vaschillo. ``Assessing requirements to scale to practical quantum advantage'' (2022). arXiv:2211.07629.

5. Adam Paetznick, Christina Knapp, Nicolas Delfosse, Bela Bauer, Jeongwan Haah, Matthew B. Hastings, and Marcus P. da Silva. ``Performance of Planar Floquet Codes with Majorana-Based Qubits''. PRX Quantum 4, 010310 (2023). arXiv:2202.11829.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3