Rigorous results on approach to thermal equilibrium, entanglement, and nonclassicality of an optical quantum field mode scattering from the elements of a non-equilibrium quantum reservoir

Author:

De Bievre Stephan1ORCID,Merkli Marco2,Parris Paul E.3

Affiliation:

1. Univ. Lille, CNRS, Inria, UMR 8524, Laboratoire P. Painlevé, F-59000 Lille, France

2. Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada

3. Missouri University of Science and Technology, Rolla, Missouri, 65409, USA

Abstract

Rigorous derivations of the approach of individual elements of large isolated systems to a state of thermal equilibrium, starting from arbitrary initial states, are exceedingly rare. This is particularly true for quantum mechanical systems. We demonstrate here how, through a mechanism of repeated scattering, an approach to equilibrium of this type actually occurs in a specific quantum system, one that can be viewed as a natural quantum analog of several previously studied classical models. In particular, we consider an optical mode passing through a reservoir composed of a large number of sequentially-encountered modes of the same frequency, each of which it interacts with through a beam splitter. We then analyze the dependence of the asymptotic state of this mode on the assumed stationary common initial state σ of the reservoir modes and on the transmittance τ=cos⁡λ of the beam splitters. These results allow us to establish that at small λ such a mode will, starting from an arbitrary initial system state ρ, approach a state of thermal equilibrium even when the reservoir modes are not themselves initially thermalized. We show in addition that, when the initial states are pure, the asymptotic state of the optical mode is maximally entangled with the reservoir and exhibits less nonclassicality than the state of the reservoir modes.

Funder

Labex CEMPI

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3