A generic quantum Wielandt's inequality

Author:

Jia Yifan12,Capel Angela3

Affiliation:

1. Department of Mathematics, Technische Universität München, Germany

2. Munich Center for Quantum Science and Technology (MCQST), Germany

3. Fachbereich Mathematik, Universität Tübingen, Germany

Abstract

Quantum Wielandt's inequality gives an optimal upper bound on the minimal length k such that length-k products of elements in a generating system span Mn(C). It is conjectured that k should be of order O(n2) in general. In this paper, we give an overview of how the question has been studied in the literature so far and its relation to a classical question in linear algebra, namely the length of the algebra Mn(C). We provide a generic version of quantum Wielandt's inequality, which gives the optimal length with probability one. More specifically, we prove based on [KS16] that k generically is of order Θ(log⁡n), as opposed to the general case, in which the best bound to date is O(n2log⁡n). Our result implies a new bound on the primitivity index of a random quantum channel. Furthermore, we shed new light on a long-standing open problem for Projected Entangled Pair State, by concluding that almost any translation-invariant PEPS (in particular, Matrix Product State) with periodic boundary conditions on a grid with side length of order Ω(log⁡n) is the unique ground state of a local Hamiltonian. We observe similar characteristics for matrix Lie algebras and provide numerical results for random Lie-generating systems.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3