Affiliation:
1. Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
Abstract
Hypergraph product codes are a promising avenue to achieving fault-tolerant quantum computation with constant overhead. When embedding these and other constant-rate qLDPC codes into 2D, a significant number of nonlocal connections are required, posing difficulties for some quantum computing architectures. In this work, we introduce a fault-tolerance scheme that aims to alleviate the effects of implementing this nonlocality by measuring generators acting on spatially distant qubits less frequently than those which do not. We investigate the performance of a simplified version of this scheme, where the measured generators are randomly selected. When applied to hypergraph product codes and a modified small-set-flip decoding algorithm, we prove that for a sufficiently high percentage of generators being measured, a threshold still exists. We also find numerical evidence that the logical error rate is exponentially suppressed even when a large constant fraction of generators are not measured.
Funder
National Science Foundation RQS QLCI
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献