Low-depth simulations of fermionic systems on square-grid quantum hardware
Author:
Algaba Manuel G.1, Sriluckshmy P. V.1, Leib Martin1, Šimkovic IV Fedor1
Affiliation:
1. IQM, Nymphenburgerstr. 86, 80636 Munich, Germany
Abstract
We present a general strategy for mapping fermionic systems to quantum hardware with square qubit connectivity which yields low-depth quantum circuits, counted in the number of native two-qubit fSIM gates. We achieve this by leveraging novel operator decomposition and circuit compression techniques paired with specifically chosen low-depth fermion-to-qubit mappings and allow for a high degree of gate cancellations and parallelism. Our mappings retain the flexibility to simultaneously optimize for qubit counts or qubit operator weights and can be used to investigate arbitrary fermionic lattice geometries. We showcase our approach by investigating the tight-binding model, the Fermi-Hubbard model as well as the multi-orbital Hubbard-Kanamori model. We report unprecedentedly low circuit depths per single Trotter layer with up to a 70% improvement upon previous state-of-the-art. Our compression technique also results in significant reduction of two-qubit gates. We find the lowest gate-counts when applying the XYZ-formalism to the DK mapping. Additionally, we show that our decomposition and compression formalism produces favourable circuits even when no native parameterized two-qubit gates are available.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Reference92 articles.
1. S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, Rev. Mod. Phys. 92, 015003 (2020). 2. A. Delgado, P. A. M. Casares, R. d. Reis, M. S. Zini, R. Campos, N. Cruz-Hernández, A.-C. Voigt, A. Lowe, S. Jahangiri, M. A. Martin-Delgado, J. E. Mueller, and J. M. Arrazola, How to simulate key properties of lithium-ion batteries with a fault-tolerant quantum computer (2022). 3. M. P. Andersson, M. N. Jones, K. V. Mikkelsen, F. You, and S. S. Mansouri, Current Opinion in Chemical Engineering 36, 100754 (2022). 4. M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Proceedings of the National Academy of Sciences 114, 7555 (2017). 5. J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L. Chan, C.-M. Chung, Y. Deng, M. Ferrero, T. M. Henderson, C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis, N. V. Prokof'ev, M. Qin, G. E. Scuseria, H. Shi, B. V. Svistunov, L. F. Tocchio, I. S. Tupitsyn, S. R. White, S. Zhang, B.-X. Zheng, Z. Zhu, and E. Gull (Simons Collaboration on the Many-Electron Problem), Phys. Rev. X 5, 041041 (2015).
|
|