Resource engines

Author:

Wojewódka-Ściążko Hanna12,Puchała Zbigniew2,Korzekwa Kamil3

Affiliation:

1. Institute of Mathematics, University of Silesia in Katowice, Bankowa 14, 40-007 Katowice, Poland

2. Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland

3. Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland

Abstract

In this paper we aim to push the analogy between thermodynamics and quantum resource theories one step further. Previous inspirations were based predominantly on thermodynamic considerations concerning scenarios with a single heat bath, neglecting an important part of thermodynamics that studies heat engines operating between two baths at different temperatures. Here, we investigate the performance of resource engines, which replace the access to two heat baths at different temperatures with two arbitrary constraints on state transformations. The idea is to imitate the action of a two–stroke heat engine, where the system is sent to two agents (Alice and Bob) in turns, and they can transform it using their constrained sets of free operations. We raise and address several questions, including whether or not a resource engine can generate a full set of quantum operations or all possible state transformations, and how many strokes are needed for that. We also explain how the resource engine picture provides a natural way to fuse two or more resource theories, and we discuss in detail the fusion of two resource theories of thermodynamics with two different temperatures, and two resource theories of coherence with respect to two different bases.

Funder

National Science Centre Poland

Foundation for Polish Science

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3