Bayesian Optimization for Robust State Preparation in Quantum Many-Body Systems

Author:

Blatz Tizian12,Kwan Joyce3,Léonard Julian4,Bohrdt Annabelle25

Affiliation:

1. Department of Physics and Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Munich D-80333, Germany

2. Munich Center for Quantum Science and Technology (MCQST), Munich D-80799, Germany

3. Department of Physics, Harvard University, Cambridge, MA 02138, USA

4. Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Vienna 1020, Austria

5. Institute of Theoretical Physics, University of Regensburg, Regensburg D-93053, Germany

Abstract

New generations of ultracold-atom experiments are continually raising the demand for efficient solutions to optimal control problems. Here, we apply Bayesian optimization to improve a state-preparation protocol recently implemented in an ultracold-atom system to realize a two-particle fractional quantum Hall state. Compared to manual ramp design, we demonstrate the superior performance of our optimization approach in a numerical simulation – resulting in a protocol that is 10x faster at the same fidelity, even when taking into account experimentally realistic levels of disorder in the system. We extensively analyze and discuss questions of robustness and the relationship between numerical simulation and experimental realization, and how to make the best use of the surrogate model trained during optimization. We find that numerical simulation can be expected to substantially reduce the number of experiments that need to be performed with even the most basic transfer learning techniques. The proposed protocol and workflow will pave the way toward the realization of more complex many-body quantum states in experiments.

Funder

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy

Austrian Science Fund

Österreichische Forschungsförderungsgesellschaft

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3