Spacetime-Efficient Low-Depth Quantum State Preparation with Applications

Author:

Gui Kaiwen123,Dalzell Alexander M.4,Achille Alessandro5,Suchara Martin1,Chong Frederic T.3

Affiliation:

1. Amazon Web Services, WA, USA

2. Pritzker School of Molecular Engineering, University of Chicago, IL, USA

3. Department of Computer Science, University of Chicago, IL, USA

4. AWS Center for Quantum Computing, Pasadena, CA, USA

5. AWS AI Labs, Pasadena, CA, USA

Abstract

We propose a novel deterministic method for preparing arbitrary quantum states. When our protocol is compiled into CNOT and arbitrary single-qubit gates, it prepares an N-dimensional state in depth O(log⁡(N)) and spacetime allocation (a metric that accounts for the fact that oftentimes some ancilla qubits need not be active for the entire circuit) O(N), which are both optimal. When compiled into the {H,S,T,CNOT} gate set, we show that it requires asymptotically fewer quantum resources than previous methods. Specifically, it prepares an arbitrary state up to error ϵ with optimal depth of O(log⁡(N)+log⁡(1/ϵ)) and spacetime allocation O(Nlog⁡(log⁡(N)/ϵ)), improving over O(log⁡(N)log⁡(log⁡(N)/ϵ)) and O(Nlog⁡(N/ϵ)), respectively. We illustrate how the reduced spacetime allocation of our protocol enables rapid preparation of many disjoint states with only constant-factor ancilla overhead – O(N) ancilla qubits are reused efficiently to prepare a product state of wN-dimensional states in depth O(w+log⁡(N)) rather than O(wlog⁡(N)), achieving effectively constant depth per state. We highlight several applications where this ability would be useful, including quantum machine learning, Hamiltonian simulation, and solving linear systems of equations. We provide quantum circuit descriptions of our protocol, detailed pseudocode, and gate-level implementation examples using Braket.

Funder

EPiQC

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3