Adaptive Online Learning of Quantum States

Author:

Chen Xinyi12,Hazan Elad12,Li Tongyang34,Lu Zhou12,Wang Xinzhao34,Yang Rui34

Affiliation:

1. Department of Computer Science, Princeton University, NJ 08540, USA

2. Google DeepMind Princeton, NJ 08542, USA

3. Center on Frontiers of Computing Studies, Peking University, 100871 Beijing, China

4. School of Computer Science, Peking University, 100871 Beijing, China

Abstract

The problem of efficient quantum state learning, also called shadow tomography, aims to comprehend an unknown d-dimensional quantum state through POVMs. Yet, these states are rarely static; they evolve due to factors such as measurements, environmental noise, or inherent Hamiltonian state transitions. This paper leverages techniques from adaptive online learning to keep pace with such state changes.The key metrics considered for learning in these mutable environments are enhanced notions of regret, specifically adaptive and dynamic regret. We present adaptive and dynamic regret bounds for online shadow tomography, which are polynomial in the number of qubits and sublinear in the number of measurements. To support our theoretical findings, we include numerical experiments that validate our proposed models.

Funder

National Natural Science Foundation of China

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3