Relaxations and Exact Solutions to Quantum Max Cut via the Algebraic Structure of Swap Operators

Author:

Watts Adam Bene1,Chowdhury Anirban1,Epperly Aidan2,Helton J. William2,Klep Igor34

Affiliation:

1. University of Waterloo

2. University of California San Diego

3. Faculty of Mathematics and Physics, University of Ljubljana

4. Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

Abstract

The Quantum Max Cut (QMC) problem has emerged as a test-problem for designing approximation algorithms for local Hamiltonian problems. In this paper we attack this problem using the algebraic structure of QMC, in particular the relationship between the quantum max cut Hamiltonian and the representation theory of the symmetric group.The first major contribution of this paper is an extension of non-commutative Sum of Squares (ncSoS) optimization techniques to give a new hierarchy of relaxations to Quantum Max Cut. The hierarchy we present is based on optimizations over polynomials in the qubit swap operators. This is in contrast to the "standard" quantum Lasserre Hierarchy, which is based on polynomials expressed in terms of the Pauli matrices. To prove correctness of this hierarchy, we exploit a finite presentation of the algebra generated by the qubit swap operators. This presentation allows for the use of computer algebraic techniques to manipulate and simplify polynomials written in terms of the swap operators, and may be of independent interest. Surprisingly, we find that level-2 of this new hierarchy is numerically exact (up to tolerance 10−7) on all QMC instances with uniform edge weights on graphs with at most 8 vertices.The second major contribution of this paper is a polynomial-time algorithm that computes (in exact arithmetic) the maximum eigenvalue of the QMC Hamiltonian for certain graphs, including graphs that can be "decomposed" as a signed combination of cliques. A special case of the latter are complete bipartite graphs with uniform edge-weights, for which exact solutions are known from the work of Lieb and Mattis \cite{lieb1962ordering}. Our methods, which use representation theory of the symmetric group, can be seen as a generalization of the Lieb-Mattis result.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Reference49 articles.

1. Anurag Anshu, David Gosset, and Karen Morenz. Beyond Product State Approximations for a Quantum Analogue of Max Cut. In 15th Conference on the Theory of Quantum Computation, Communication and Cryptography TQC 2020, volume 158 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:15, Riga, Latvia, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing. OCLC: 1194977622. URL: https://drops.dagstuhl.de/opus/volltexte/2020/12066, doi:10.4230/LIPIcs.TQC.2020.7.

2. Jacob C Bridgeman and Christopher T Chubb. Hand-waving and interpretive dance: an introductory course on tensor networks. Journal of Physics A: Mathematical and Theoretical, 50(22):223001, may 2017. URL: https://dx.doi.org/10.1088/1751-8121/aa6dc3, doi:10.1088/1751-8121/aa6dc3.

3. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993). URL: http://dx.doi.org/10.1006/jsco.1996.0125, doi:10.1006/jsco.1996.0125.

4. Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of the $F_5$ Gröbner basis algorithm. J. Symb. Comput., 70:49–70, 2015. doi:10.1016/j.jsc.2014.09.025.

5. Sergey Bravyi, David Gosset, Robert König, and Kristan Temme. Approximation algorithms for quantum many-body problems. Journal of Mathematical Physics, 60(3):032203, March 2019. URL: http://aip.scitation.org/doi/10.1063/1.5085428, doi:10.1063/1.5085428.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Quantum Hamiltonians at Any Temperature in Polynomial Time;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3