Transformations in quantum networks via local operations assisted by finitely many rounds of classical communication

Author:

Spee Cornelia12,Kraft Tristan13

Affiliation:

1. Institute for Theoretical Physics, University of Innsbruck, Technikerstraße 21A, 6020 Innsbruck, Austria

2. Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria

3. Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany

Abstract

Recent advances have led towards first prototypes of quantum networks in which entanglement is distributed by sources producing bipartite entangled states. This raises the question of which states can be generated in quantum networks based on bipartite sources using local operations and classical communication. In this work, we study state transformations under finite rounds of local operations and classical communication (LOCC) in networks based on maximally entangled two-qubit states. We first derive the symmetries for arbitrary network structures, as these determine which transformations are possible. Then, we show that contrary to tree graphs, for which it has already been shown that any state within the same entanglement class can be reached, there exist states which can be reached probabilistically but not deterministically if the network contains a cycle. Furthermore, we provide a systematic way to determine states which are not reachable in networks consisting of a cycle. Moreover, we provide a complete characterization of the states which can be reached in a cycle network with a protocol where each party measures only once, and each step of the protocol results in a deterministic transformation. Finally, we present an example which cannot be reached with such a simple protocol, and constitutes, up to our knowledge, the first example of a LOCC transformation among fully entangled states requiring three rounds of classical communication.

Funder

Austrian Science Fund

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3