Universal framework for simultaneous tomography of quantum states and SPAM noise
Author:
Jayakumar Abhijith1, Chessa Stefano123, Coffrin Carleton4, Lokhov Andrey Y.1, Vuffray Marc1, Misra Sidhant1
Affiliation:
1. Theoretical Division, Los Alamos National Laboratory, 87545, NM, USA 2. NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126, Pisa, Italy 3. Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, 61801, IL, USA 4. Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
Abstract
We present a general denoising algorithm for performing simultaneous tomography of quantum states and measurement noise. This algorithm allows us to fully characterize state preparation and measurement (SPAM) errors present in any quantum system. Our method is based on the analysis of the properties of the linear operator space induced by unitary operations. Given any quantum system with a noisy measurement apparatus, our method can output the quantum state and the noise matrix of the detector up to a single gauge degree of freedom. We show that this gauge freedom is unavoidable in the general case, but this degeneracy can be generally broken using prior knowledge on the state or noise properties, thus fixing the gauge for several types of state-noise combinations with no assumptions about noise strength. Such combinations include pure quantum states with arbitrarily correlated errors, and arbitrary states with block independent errors. This framework can further use available prior information about the setting to systematically reduce the number of observations and measurements required for state and noise detection. Our method effectively generalizes existing approaches to the problem, and includes as special cases common settings considered in the literature requiring an uncorrelated or invertible noise matrix, or specific probe states.
Funder
LDRD - Los Alamos National Lab
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Reference71 articles.
1. Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum supremacy experiments. In Proceedings of the 32nd Computational Complexity Conference, CCC '17, Dagstuhl, DEU, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 9783959770408. 10.48550/arXiv.1612.05903. 2. C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S. Varsamopoulos, C. Eichler, A. Wallraff, L. Geck, A. Kruth, J. Knoch, H. Bluhm, and K Bertels. The engineering challenges in quantum computing. In Design, Automation & Test in Europe Conference & Exhibition, 2017, pages 836–845, 2017. 10.23919/DATE.2017.7927104. 3. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574 (7779): 505–510, Oct 2019. ISSN 1476-4687. 10.1038/s41586-019-1666-5. 4. Robin Blume-Kohout, John King Gamble, Erik Nielsen, Jonathan Mizrahi, Jonathan D. Sterk, and Peter Maunz. Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit. 2013. 10.48550/ARXIV.1310.4492. 5. Adam Bouland, Bill Fefferman, Zeph Landau, and Yunchao Liu. Noise and the frontier of quantum supremacy. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 1308–1317, 2022. 10.1109/FOCS52979.2021.00127.
|
|