Bicolor loop models and their long range entanglement

Author:

Zhang Zhao12ORCID

Affiliation:

1. Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway

2. SISSA and INFN, Sezione di Trieste, via Bonomea 265, I-34136, Trieste, Italy

Abstract

Quantum loop models are well studied objects in the context of lattice gauge theories and topological quantum computing. They usually carry long range entanglement that is captured by the topological entanglement entropy. I consider generalization of the toric code model to bicolor loop models and show that the long range entanglement can be reflected in three different ways: a topologically invariant constant, a sub-leading logarithmic correction to the area law, or a modified bond dimension for the area-law term. The Hamiltonians are not exactly solvable for the whole spectra, but admit a tower of area-law exact excited states corresponding to the frustration free superposition of loop configurations with arbitrary pairs of localized vertex defects. The continuity of color along loops imposes kinetic constraints on the model and results in Hilbert space fragmentation, unless plaquette operators involving two neighboring faces are introduced to the Hamiltonian.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3