Affiliation:
1. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Abstract
Quantum dynamics with local interactions in lattice models display rich physics, but is notoriously hard to study. Dual-unitary circuits allow for exact answers to interesting physical questions in clean or disordered one- and higher-dimensional quantum systems. However, this family of models shows some non-universal features, like vanishing correlations inside the light-cone and instantaneous thermalization of local observables. In this work we propose a generalization of dual-unitary circuits where the exactly calculable spatial-temporal correlation functions display richer behavior, and have non-trivial thermalization of local observables. This is achieved by generalizing the single-gate condition to a hierarchy of multi-gate conditions, where the first level recovers dual-unitary models, and the second level exhibits these new interesting features. We also extend the discussion and provide exact solutions to correlators with few-site observables and discuss higher-orders, including the ones after a quantum quench. In addition, we provide exhaustive parametrizations for qubit cases, and propose a new family of models for local dimensions larger than two, which also provides a new family of dual-unitary models.
Funder
Alexander von Humboldt Foundation
Hightech Agenda Bayern Plus
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献