Causal structure in the presence of sectorial constraints, with application to the quantum switch

Author:

Ormrod Nick1,Vanrietvelde Augustin123,Barrett Jonathan1

Affiliation:

1. Quantum Group, Department of Computer Science, University of Oxford

2. Department of Physics, Imperial College London

3. HKU-Oxford Joint Laboratory for Quantum Information and Computation

Abstract

Existing work on quantum causal structure assumes that one can perform arbitrary operations on the systems of interest. But this condition is often not met. Here, we extend the framework for quantum causal modelling to situations where a system can suffer sectorial constraints, that is, restrictions on the orthogonal subspaces of its Hilbert space that may be mapped to one another. Our framework (a) proves that a number of different intuitions about causal relations turn out to be equivalent; (b) shows that quantum causal structures in the presence of sectorial constraints can be represented with a directed graph; and (c) defines a fine-graining of the causal structure in which the individual sectors of a system bear causal relations. As an example, we apply our framework to purported photonic implementations of the quantum switch to show that while their coarse-grained causal structure is cyclic, their fine-grained causal structure is acyclic. We therefore conclude that these experiments realize indefinite causal order only in a weak sense. Notably, this is the first argument to this effect that is not rooted in the assumption that the causal relata must be localized in spacetime.

Funder

European Physical Sciences Research Council

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3