Random access codes via quantum contextual redundancy

Author:

Gatti Giancarlo123ORCID,Huerga Daniel1ORCID,Solano Enrique1456ORCID,Sanz Mikel1257ORCID

Affiliation:

1. Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain

2. EHU Quantum Center, University of the Basque Country UPV/EHU

3. Quantum MADS, Uribitarte Kalea 6, 48001 Bilbao, Spain

4. International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Department of Physics, Shanghai University, 200444 Shanghai, China

5. IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain

6. Kipu Quantum, Greifswalderstrasse 226, 10405 Berlin, Germany

7. Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain

Abstract

We propose a protocol to encode classical bits in the measurement statistics of many-body Pauli observables, leveraging quantum correlations for a random access code. Measurement contexts built with these observables yield outcomes with intrinsic redundancy, something we exploit by encoding the data into a set of convenient context eigenstates. This allows to randomly access the encoded data with few resources. The eigenstates used are highly entangled and can be generated by a discretely-parametrized quantum circuit of low depth. Applications of this protocol include algorithms requiring large-data storage with only partial retrieval, as is the case of decision trees. Using n-qubit states, this Quantum Random Access Code has greater success probability than its classical counterpart for n≥14 and than previous Quantum Random Access Codes for n≥16. Furthermore, for n≥18, it can be amplified into a nearly-lossless compression protocol with success probability 0.999 and compression ratio O(n2/2n). The data it can store is equal to Google-Drive server capacity for n=44, and to a brute-force solution for chess (what to do on any board configuration) for n=100.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3