Energy-efficient quantum non-demolition measurement with a spin-photon interface

Author:

Maffei Maria1,Goes Bruno O.2,Wein Stephen C.23,Jordan Andrew N.45,Lanco Loïc6,Auffèves Alexia78

Affiliation:

1. Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy

2. Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France

3. Quandela SAS, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France

4. Institute for Quantum Studies, Chapman University, 1 University Drive, Orange, CA 92866, USA

5. Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

6. Université Paris Cité, Centre for Nanoscience and Nanotechnology (C2N), F-91120 Palaiseau, France

7. MajuLab, CNRS–UCA-SU-NUS-NTU International Joint Research Laboratory

8. Centre for Quantum Technologies, National University of Singapore, 117543 Singapore, Singapore

Abstract

Spin-photon interfaces (SPIs) are key devices of quantum technologies, aimed at coherently transferring quantum information between spin qubits and propagating pulses of polarized light. We study the potential of a SPI for quantum non demolition (QND) measurements of a spin state. After being initialized and scattered by the SPI, the state of a light pulse depends on the spin state. It thus plays the role of a pointer state, information being encoded in the light's temporal and polarization degrees of freedom. Building on the fully Hamiltonian resolution of the spin-light dynamics, we show that quantum superpositions of zero and single photon states outperform coherent pulses of light, producing pointer states which are more distinguishable with the same photon budget. The energetic advantage provided by quantum pulses over coherent ones is maintained when information on the spin state is extracted at the classical level by performing projective measurements on the light pulses. The proposed schemes are robust against imperfections in state of the art semi-conducting devices.

Funder

European Union Horizon 2020 Research and innovation Programme under the Marie Sklodowska-Curie Grant Agreement

Foundational Questions Institute Fund

John Templeton Foundation

Qu-DICE

Plan France 2030

National Research Foundation, Singapore and A*STAR

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3