Differentiable matrix product states for simulating variational quantum computational chemistry
Author:
Guo Chu1, Fan Yi2, Xu Zhiqian3, Shang Honghui4
Affiliation:
1. Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, Henan 450000, China 2. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China 3. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 4. Key Laboratory of Precision and Intelligent Chemistry,University of Science and Technology of China, Hefei,Anhui 230026, China
Abstract
Quantum Computing is believed to be the ultimate solution for quantum chemistry problems. Before the advent of large-scale, fully fault-tolerant quantum computers, the variational quantum eigensolver (VQE) is a promising heuristic quantum algorithm to solve real world quantum chemistry problems on near-term noisy quantum computers. Here we propose a highly parallelizable classical simulator for VQE based on the matrix product state representation of quantum state, which significantly extend the simulation range of the existing simulators. Our simulator seamlessly integrates the quantum circuit evolution into the classical auto-differentiation framework, thus the gradients could be computed efficiently similar to the classical deep neural network, with a scaling that is independent of the number of variational parameters. As applications, we use our simulator to study commonly used small molecules such as HF, HCl, LiH and H2O, as well as larger molecules CO2, BeH2 and H4 with up to 40 qubits. The favorable scaling of our simulator against the number of qubits and the number of parameters could make it an ideal testing ground for near-term quantum algorithms and a perfect benchmarking baseline for oncoming large scale VQE experiments on noisy quantum computers.
Funder
National Natural Science Foundation of China Open Research Fund from State Key Laboratory of High Performance Computing of China
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Reference66 articles.
1. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574 (7779): 505–510, 2019. doi.org/10.1038/s41586-019-1666-5. 2. Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu Guo, Shaojun Guo, Lianchen Han, Linyin Hong, He-Liang Huang, Yong-Heng Huo, Liping Li, Na Li, Shaowei Li, Yuan Li, Futian Liang, Chun Lin, Jin Lin, Haoran Qian, Dan Qiao, Hao Rong, Hong Su, Lihua Sun, Liangyuan Wang, Shiyu Wang, Dachao Wu, Yu Xu, Kai Yan, Weifeng Yang, Yang Yang, Yangsen Ye, Jianghan Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin Zhang, Kaili Zhang, Yiming Zhang, Han Zhao, Youwei Zhao, Liang Zhou, Qingling Zhu, Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 127: 180501, Oct 2021. 10.1103/PhysRevLett.127.180501. 3. Qingling Zhu, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science Bulletin, 67 (3): 240–245, 2022. doi.org/10.1016/j.scib.2021.10.017. 4. Daochen Wang, Oscar Higgott, and Stephen Brierley. Accelerated variational quantum eigensolver. Phys. Rev. Lett., 122: 140504, Apr 2019. 10.1103/PhysRevLett.122.140504. 5. Stephen DiAdamo, Marco Ghibaudi, and James Cruise. Distributed quantum computing and network control for accelerated vqe. IEEE Transactions on Quantum Engineering, 2: 1–21, 2021. ISSN 2689-1808. 10.1109/tqe.2021.3057908.
|
|