Only Classical Parameterised States have Optimal Measurements under Least Squares Loss

Author:

Salmon Wilfred123,Strelchuk Sergii1,Arvidsson-Shukur David2

Affiliation:

1. DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB30WA, UK

2. Hitachi Cambridge Laboratory, J. J. Thomson Avenue, CB3 0HE, Cambridge, UK

3. was29@cam.ac.uk

Abstract

Measurements of quantum states form a key component in quantum-information processing. It is therefore an important task to compare measurements and furthermore decide if a measurement strategy is optimal. Entropic quantities, such as the quantum Fisher information, capture asymptotic optimality but not optimality with finite resources. We introduce a framework that allows one to conclusively establish if a measurement is optimal in the non-asymptotic regime. Our method relies on the fundamental property of expected errors of estimators, known as risk, and it does not involve optimisation over entropic quantities. The framework applies to finite sample sizes and lack of prior knowledge, as well as to the asymptotic and Bayesian settings. We prove a no-go theorem that shows that only classical states admit optimal measurements under the most common choice of error measurement: least squares. We further consider the less restrictive notion of an approximately optimal measurement and give sufficient conditions for such measurements to exist. Finally, we generalise the notion of when an estimator is inadmissible (i.e. strictly worse than an alternative), and provide two sufficient conditions for a measurement to be inadmissible.

Funder

Royal Society

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3