Quantum reference frames: derivation of perspective-dependent descriptions via a perspective-neutral structure

Author:

Zelezny Viktor1

Affiliation:

1. Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria

Abstract

In standard quantum mechanics, reference frames are treated as abstract entities. We can think of them as idealized, infinite-mass subsystems which decouple from the rest of the system. In nature, however, all reference frames are realized through finite-mass systems that are subject to the laws of quantum mechanics and must be included in the dynamical evolution. A fundamental physical theory should take this fact seriously. In this paper, we further develop a symmetry-inspired approach to describe physics from the perspective of quantum reference frames. We find a unifying framework allowing us to systematically derive a broad class of perspective dependent descriptions and the transformations between them. Working with a translational-invariant toy model of three free particles, we discover that the introduction of relative coordinates leads to a Hamiltonian structure with two non-commuting constraints. This structure can be said to contain all observer-perspectives at once, while the redundancies prevent an immediate operational interpretation. We show that the operationally meaningful perspective dependent descriptions are given by Darboux coordinates on the constraint surface and that reference frame transformations correspond to reparametrizations of the constraint surface. We conclude by constructing a quantum perspective neutral structure, via which we can derive and change perspective dependent descriptions without referring to the classical theory. In addition to the physical findings, this work illuminates the interrelation of first and second class constrained systems and their respective quantization procedures.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3