Circuits of space and time quantum channels

Author:

Kos Pavel12ORCID,Styliaris Georgios12

Affiliation:

1. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

2. Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany

Abstract

Exact solutions in interacting many-body systems are scarce but extremely valuable since they provide insights into the dynamics. Dual-unitary models are examples in one spatial dimension where this is possible. These brick-wall quantum circuits consist of local gates, which remain unitary not only in time, but also when interpreted as evolutions along the spatial directions. However, this setting of unitary dynamics does not directly apply to real-world systems due to their imperfect isolation, and it is thus imperative to consider the impact of noise to dual-unitary dynamics and its exact solvability. In this work we generalise the ideas of dual-unitarity to obtain exact solutions in noisy quantum circuits, where each unitary gate is substituted by a local quantum channel. Exact solutions are obtained by demanding that the noisy gates yield a valid quantum channel not only in time, but also when interpreted as evolutions along one or both of the spatial directions and possibly backwards in time. This gives rise to new families of models that satisfy different combinations of unitality constraints along the space and time directions. We provide exact solutions for the spatio-temporal correlation functions, spatial correlations after a quantum quench, and the structure of steady states for these families of models. We show that noise unbiased around the dual-unitary family leads to exactly solvable models, even if dual-unitarity is strongly violated. We prove that any channel unital in both space and time directions can be written as an affine combination of a particular class of dual-unitary gates. Finally, we extend the definition of solvable initial states to matrix-product density operators. We completely classify them when their tensor admits a local purification.

Funder

Alexander von Humboldt Foundation

DFG

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3