Synthesis of and compilation with time-optimal multi-qubit gates

Author:

Baßler Pascal1,Zipper Matthias1,Cedzich Christopher1,Heinrich Markus1,Huber Patrick H.2,Johanning Michael2,Kliesch Martin13

Affiliation:

1. Institute for Theoretical Physics, Heinrich-Heine-Universität Düsseldorf, Germany

2. Department of Physics, School of Science and Technology, University of Siegen, Germany

3. Institute for Quantum and Quantum Inspired Computing, Hamburg University of Technology, Germany

Abstract

We develop a method to synthesize a class of entangling multi-qubit gates for a quantum computing platform with fixed Ising-type interaction with all-to-all connectivity. The only requirement on the flexibility of the interaction is that it can be switched on and off for individual qubits. Our method yields a time-optimal implementation of the multi-qubit gates. We numerically demonstrate that the total multi-qubit gate time scales approximately linear in the number of qubits. Using this gate synthesis as a subroutine, we provide compilation strategies for important use cases: (i) we show that any Clifford circuit on n qubits can be implemented using at most 2n multi-qubit gates without requiring ancilla qubits, (ii) we decompose the quantum Fourier transform in a similar fashion, (iii) we compile a simulation of molecular dynamics, and (iv) we propose a method for the compilation of diagonal unitaries with time-optimal multi-qubit gates, as a step towards general unitaries. As motivation, we provide a detailed discussion on a microwave controlled ion trap architecture with magnetic gradient induced coupling (MAGIC) for the generation of the Ising-type interactions.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constant Depth Code Deformations in the Parity Architecture;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3