High-dimensional Encoding in the Round-Robin Differential-Phase-Shift Protocol

Author:

Stasiuk Mikka12,Hufnagel Felix31,Gao Xiaoqin31,Goldberg Aaron Z.13,Bouchard Frédéric1,Karimi Ebrahim31,Heshami Khabat13

Affiliation:

1. National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada

2. Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L3G1 Waterloo, Ontario, Canada

3. Nexus for Quantum Technologies, University of Ottawa, Ottawa, K1N 6N5, ON, Canada

Abstract

In quantum key distribution (QKD), protocols are tailored to adopt desirable experimental attributes, including high key rates, operation in high noise levels, and practical security considerations. The round-robin differential phase shift protocol (RRDPS), falling in the family of differential phase shift protocols, was introduced to remove restrictions on the security analysis, such as the requirement to monitor signal disturbances, improving its practicality in implementations. While the RRDPS protocol requires the encoding of single photons in high-dimensional quantum states, at most, only one bit of secret key is distributed per sifted photon. However, another family of protocols, namely high-dimensional (HD) QKD, enlarges the encoding alphabet, allowing single photons to carry more than one bit of secret key each. The high-dimensional BB84 protocol exemplifies the potential benefits of such an encoding scheme, such as larger key rates and higher noise tolerance. Here, we devise an approach to extend the RRDPS QKD to an arbitrarily large encoding alphabet and explore the security consequences. We demonstrate our new framework with a proof-of-concept experiment and show that it can adapt to various experimental conditions by optimizing the protocol parameters. Our approach offers insight into bridging the gap between seemingly incompatible quantum communication schemes by leveraging the unique approaches to information encoding of both HD and DPS QKD.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3