Solve single photon detector problems

Author:

Shu Hao1ORCID

Affiliation:

1. Shenzhen University South China University of Technology

Abstract

Single photon detector(SPD) problems arise in most quantum tasks, especially for measuring states going through high-lost channels. They are particularly prominent in quantum key distribution(QKD), which could be the most significant application in quantum information theory. In recent years, QKD distance has been improved dramatically but is still restricted because the bit error rate(QBER) caused by SPD dark counts will be out of control as the distance increases. If this problem can be solved, QKD can be implemented over arbitrarily long distances. However, previous solutions often result in impractical requirements such as superconductors while they can only reduce the dark count rate to finite low levels. In this paper, we solve SPD problems with today's technologies only. Although it is the no-cloning theorem that prevents a state from being measured multiple times to obtain a more reliable result, we propose a scheme circumventing the no-cloning theorem in certain tasks to allow a single state to be employed several times. The scheme demonstrates that imperfect detectors can provide nearly perfect results, namely, the QBER caused by dark counts can be reduced to arbitrarily low while in the meantime, detective efficiency can be improved to arbitrarily high. Consequently, QKD distance is not limited by the imperfect SPD anymore and can be improved from hundreds of kilometers to thousands without high-technology detectors. Furthermore, similar schemes can be applied for reducing measurement errors or improving the performance of sources. Finally, it is worth noting that although the paper is mainly discussed in the context of QKD, our scheme is an independent scheme that could be employed in other protocols wherever SPD are employed.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3