Fermion-qudit quantum processors for simulating lattice gauge theories with matter
Author:
Zache Torsten V.123, González-Cuadra Daniel123, Zoller Peter12
Affiliation:
1. Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria 2. Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria 3. These authors contributed equally to this work.
Abstract
Simulating the real-time dynamics of lattice gauge theories, underlying the Standard Model of particle physics, is a notoriously difficult problem where quantum simulators can provide a practical advantage over classical approaches. In this work, we present a complete Rydberg-based architecture, co-designed to digitally simulate the dynamics of general gauge theories coupled to matter fields in a hardware-efficient manner. Ref. \cite{Gonzalez_2022} showed how a qudit processor, where non-abelian gauge fields are locally encoded and time-evolved, considerably reduces the required simulation resources compared to standard qubit-based quantum computers. Here we integrate the latter with a recently introduced fermionic quantum processor \cite{Gonzalez_2023}, where fermionic statistics are accounted for at the hardware level, allowing us to construct quantum circuits that preserve the locality of the gauge-matter interactions. We exemplify the flexibility of such a fermion-qudit processor by focusing on two paradigmatic high-energy phenomena. First, we present a resource-efficient protocol to simulate the Abelian-Higgs model, where the dynamics of confinement and string breaking can be investigated. Then, we show how to prepare hadrons made up of fermionic matter constituents bound by non-abelian gauge fields, and show how to extract the corresponding hadronic tensor. In both cases, we estimate the required resources, showing how quantum devices can be used to calculate experimentally-relevant quantities in particle physics.
Funder
US Air Force Office of Scientific Research European Union’s Horizon 2020 research and innovation program Simons Collaboration on Ultra-Quantum Matter
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Reference106 articles.
1. Daniel González-Cuadra, Torsten V. Zache, Jose Carrasco, Barbara Kraus, and Peter Zoller. ``Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms''. Phys. Rev. Lett. 129, 160501 (2022). 2. D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. ``Fermionic quantum processing with programmable neutral atom arrays''. Proceedings of the National Academy of Sciences 120, e2304294120 (2023). 3. Steven Weinberg. ``The quantum theory of fields''. Volume 2. Cambridge university press. (1996). 4. István Montvay and Gernot Münster. ``Quantum fields on a lattice''. Cambridge University Press. (1994). 5. S. Aoki, Y. Aoki, D. Bečirević, T. Blum, G. Colangelo, S. Collins, M. Della Morte, P. Dimopoulos, S. Dürr, H. Fukaya, M. Golterman, Steven Gottlieb, R. Gupta, S. Hashimoto, U. M. Heller, G. Herdoiza, R. Horsley, A. Jüttner, T. Kaneko, C. J. D. Lin, E. Lunghi, R. Mawhinney, A. Nicholson, T. Onogi, C. Pena, A. Portelli, A. Ramos, S. R. Sharpe, J. N. Simone, S. Simula, R. Sommer, R. Van de Water, A. Vladikas, U. Wenger, and H. Wittig. ``Flag review 2019''. The European Physical Journal C 80, 113 (2020).
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|