Graph-theoretical optimization of fusion-based graph state generation

Author:

Lee Seok-Hyung12ORCID,Jeong Hyunseok1

Affiliation:

1. Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea

2. Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW 2006, Australia

Abstract

Graph states are versatile resources for various quantum information processing tasks, including measurement-based quantum computing and quantum repeaters. Although the type-II fusion gate enables all-optical generation of graph states by combining small graph states, its non-deterministic nature hinders the efficient generation of large graph states. In this work, we present a graph-theoretical strategy to effectively optimize fusion-based generation of any given graph state, along with a Python package OptGraphState. Our strategy comprises three stages: simplifying the target graph state, building a fusion network, and determining the order of fusions. Utilizing this proposed method, we evaluate the resource overheads of random graphs and various well-known graphs. Additionally, we investigate the success probability of graph state generation given a restricted number of available resource states. We expect that our strategy and software will assist researchers in developing and assessing experimentally viable schemes that use photonic graph states.

Funder

National Research Foundation of Korea

Institute of Information and Communications Technology Planning and Evaluation

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flexible entangled-state generation in linear optics;Physical Review A;2024-09-04

2. GraphiQ: Quantum circuit design for photonic graph states;Quantum;2024-08-28

3. Encoded-Fusion-Based Quantum Computation for High Thresholds with Linear Optics;Physical Review Letters;2024-08-01

4. Quantum LAN: On-Demand Network Topology via Two-colorable Graph States;2024 International Conference on Quantum Communications, Networking, and Computing (QCNC);2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3