Engines for predictive work extraction from memoryful quantum stochastic processes

Author:

Huang Ruo Cheng1,Riechers Paul M.12ORCID,Gu Mile134,Narasimhachar Varun15

Affiliation:

1. Nanyang Quantum Hub, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

2. Beyond Institute for Theoretical Science (BITS), San Francisco, CA, USA

3. Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore

4. MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, 117543, Singapore

5. A*STAR Quantum Innovation Centre (Q.InC), Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Republic of Singapore 138632

Abstract

Quantum information-processing techniques enable work extraction from a system's inherently quantum features, in addition to the classical free energy it contains. Meanwhile, the science of computational mechanics affords tools for the predictive modeling of non-Markovian classical and quantum stochastic processes. We combine tools from these two sciences to develop a technique for predictive work extraction from non-Markovian stochastic processes with quantum outputs. We demonstrate that this technique can extract more work than non-predictive quantum work extraction protocols, on the one hand, and predictive work extraction without quantum information processing, on the other. We discover a phase transition in the efficacy of memory for work extraction from quantum processes, which is without classical precedent. Our work opens up the prospect of machines that harness environmental free energy in an essentially quantum, essentially time-varying form.

Funder

Singapore Ministry of Education Tier 1 Grant

Singapore Research Foundation

Singapore Ministry of Education Tier 2 Grant

FQXi

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3