How to perform the coherent measurement of a curved phase space by continuous isotropic measurement. I. Spin and the Kraus-operator geometry of SL(2,C)

Author:

Jackson Christopher S.12,Caves Carlton M.2

Affiliation:

1. Quantum Algorithms and Applications Collaboratory, Sandia National Laboratories, Livermore, CA 94550, USA

2. Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM 87131

Abstract

The generalized Q-function of a spin system can be considered the outcome probability distribution of a state subjected to a measurement represented by the spin-coherent-state (SCS) positive-operator-valued measure (POVM). As fundamental as the SCS POVM is to the 2-sphere phase-space representation of spin systems, it has only recently been reported that the SCS POVM can be performed for any spin system by continuous isotropic measurement of the three total spin components [E. Shojaee, C. S. Jackson, C. A. Riofrio, A. Kalev, and I. H. Deutsch, Phys. Rev. Lett. 121, 130404 (2018)]. This article develops the theoretical details of the continuous isotropic measurement and places it within the general context of curved-phase-space correspondences for quantum systems. The analysis is in terms of the Kraus operators that develop over the course of a continuous isotropic measurement. The Kraus operators of any spin j are shown to represent elements of the Lie group SL(2,C)≅Spin(3,C), a complex version of the usual unitary operators that represent elements of SU(2)≅Spin(3,R). Consequently, the associated POVM elements represent points in the symmetric space SU(2)∖SL(2,C), which can be recognized as the 3-hyperboloid. Three equivalent stochastic techniques, (Wiener) path integral, (Fokker-Planck) diffusion equation, and stochastic differential equations, are applied to show that the continuous isotropic POVM quickly limits to the SCS POVM, placing spherical phase space at the boundary of the fundamental Lie group SL(2,C) in an operationally meaningful way. Two basic mathematical tools are used to analyze the evolving Kraus operators, the Maurer-Cartan form, modified for stochastic applications, and the Cartan, decomposition associated with the symmetric pair SU(2)SL(2,C). Informed by these tools, the three schochastic techniques are applied directly to the Kraus operators in a representation-independent – and therefore geometric – way (independent of any spectral information about the spin components).The Kraus-operator-centric, geometric treatment applies not just to SU(2)SL(2,C), but also to any compact semisimple Lie group and its complexification. The POVM associated with the continuous isotropic measurement of Lie-group generators thus corresponds to a type-IV globally Riemannian symmetric space and limits to the POVM of generalized coherent states. This generalization is the focus of a sequel to this article.

Funder

National Science Foundation

U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3