Affiliation:
1. School of Mathematics, University of Bristol, UK
Abstract
We show that any classical two-way communication protocol with shared randomness that can approximately simulate the result of applying an arbitrary measurement (held by one party) to a quantum state of n qubits (held by another), up to constant accuracy, must transmit at least Ω(2n) bits. This lower bound is optimal and matches the complexity of a simple protocol based on discretisation using an ϵ-net. The proof is based on a lower bound on the classical communication complexity of a distributed variant of the Fourier sampling problem. We obtain two optimal quantum-classical separations as easy corollaries. First, a sampling problem which can be solved with one quantum query to the input, but which requires Ω(N) classical queries for an input of size N. Second, a nonlocal task which can be solved using n Bell pairs, but for which any approximate classical solution must communicate Ω(2n) bits.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献