Affiliation:
1. Department of Applied Physics, University of Geneva, Switzerland
Abstract
While the ability to measure low temperatures accurately in quantum systems is important in a wide range of experiments, the possibilities and the fundamental limits of quantum thermometry are not yet fully understood theoretically. Here we develop a general approach to low-temperature quantum thermometry, taking into account restrictions arising not only from the sample but also from the measurement process. {We derive a fundamental bound on the minimal uncertainty for any temperature measurement that has a finite resolution. A similar bound can be obtained from the third law of thermodynamics. Moreover, we identify a mechanism enabling sub-exponential scaling, even in the regime of finite resolution. We illustrate this effect in the case of thermometry on a fermionic tight-binding chain with access to only two lattice sites, where we find a quadratic divergence of the uncertainty}. We also give illustrative examples of ideal quantum gases and a square-lattice Ising model, highlighting the role of phase transitions.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献