Quantum error correction for the toric code using deep reinforcement learning

Author:

Andreasson Philip1,Johansson Joel1,Liljestrand Simon1,Granath Mats1

Affiliation:

1. Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden

Abstract

We implement a quantum error correction algorithm for bit-flip errors on the topological toric code using deep reinforcement learning. An action-value Q-function encodes the discounted value of moving a defect to a neighboring site on the square grid (the action) depending on the full set of defects on the torus (the syndrome or state). The Q-function is represented by a deep convolutional neural network. Using the translational invariance on the torus allows for viewing each defect from a central perspective which significantly simplifies the state space representation independently of the number of defect pairs. The training is done using experience replay, where data from the algorithm being played out is stored and used for mini-batch upgrade of the Q-network. We find performance which is close to, and for small error rates asymptotically equivalent to, that achieved by the Minimum Weight Perfect Matching algorithm for code distances up to d=7. Our results show that it is possible for a self-trained agent without supervision or support algorithms to find a decoding scheme that performs on par with hand-made algorithms, opening up for future machine engineered decoders for more general error models and error correcting codes.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Reference49 articles.

1. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems 25, pages 1097-1105, 2012.

2. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521 (7553): 436, 2015. 10.1038/nature14539.

3. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.

4. Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

5. Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38 (3): 58-68, 1995. URL https://link.galegroup.com/apps/doc/A16764437/AONE?u=googlescholar&sid=AONE&xid=f888cd62.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving robustness of quantum feedback control with reinforcement learning;Physical Review A;2024-07-03

2. An RNN–policy gradient approach for quantum architecture search;Quantum Information Processing;2024-05-13

3. Decoding topological XYZ 2 codes with reinforcement learning based on attention mechanisms;Chinese Physics B;2024-05-01

4. Promatch: Extending the Reach of Real-Time Quantum Error Correction with Adaptive Predecoding;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

5. Quantum error mitigation in the regime of high noise using deep neural network: Trotterized dynamics;Quantum Information Processing;2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3